BUTUNSiNAVLAR.COM
        Giriş     Üye OL
Fiziksel ölçümler, Fiziksel Özellikler ve Ölçümleri, Hız ve İvme Ölçümü, İş, Güç ve Enerji Ölçme, Ampermetre ve Voltmetre Yardımı ile Güç Ölçmek, Wattmetreler

Fiziksel ölçümler

1.1. Fiziksel Özellikler ve Ölçümleri

Enstrümantasyon ve kontrol sistemleri temel işlev olarak herhangi bir ortamdaki bir büyüklüğü algılayıp, elektronik ortama uygun hâle dönüştürür, işledikten sonra bunu bir ekranda gösterir ve elde edilen bu değerle bir makinenin denetimini yapan sistemlerdir. Hız, ivme, eğim, basınç, sıcaklık vb. gibi niceliklerin hassas bir şekilde ölçülmesi, bunların denetimi bu kapsama girmektedir. Bu bölümde bazı temel fiziksel büyüklükler ve özellikleri incelenecektir.

1.1.1. Hız ve İvme Ölçümü

Hız bir hareketli parçacığın birim zamanda kat etmiş olduğu yoldur. Matematiksel olarak hız (Alınan yol / Geçen zaman; V= S/t (m/sn) ) olarak ifade edilir. Hız bir cismin dinamik karakteristiğidir, Newton’un ikinci kanununa göre hız, bir kuvvetin uygulanmasını gerektirir. Aslında yer değişimi, hız, ivme birbiri ile ilişkilidir. Hız yer değişiminin birinci türevi, ivme ise ikinci türevidir. Bir cismin ivmesi, o cismin hızının zamana göre değişim miktarına denir. Hız ve ivme pozisyon veya yaklaşım dedektörleri ile çıkartılmaz, bunun yerine özel algılayıcılarla ölçülür. Hız veya ivme dönüşümü için herhangi bir algılayıcının dayandığı referans noktasına göre cismin yer değişimi ölçülür. Hız ve ivme ölçümlerinde

elektromanyetik hız algılayıcıları ve çeşitli ivme ölçerler (kapasitif, piezo-rezistif, piezoelektrik, ısıl) kullanılır.

1.1.2. İş, Güç ve Enerji Ölçme

Elektrik enerjisi ile çalışan alıcıya elektrik enerjisi uygulandığında ısı, ışık, hareket vb. şekildeelde edilir. Bir kuvvet altındaki cismin, kuvvetten etkilenerek yer değiştirmesine iş denir. Parçacık dinamiğinin temel problemlerinden biri de parçacığın üzerine etkiyen kuvvet biliniyorsa, parçacığın nasıl hareket edeceğini bulmaktır. Birim iş bir cisme birim uzunlukta bir hareket sağlayan birim kuvvetin yaptığı iştir. SI birim sisteminde iş, 1 Newton metre veya 1 Joule’dür.

Bir cisme iş yaptırabilme kabiliyetine ise o cismin enerjisi denir. Diğer bir deyimle iş yapabilme kapasitesi olarak tanımlanır. Mekanik enerji, kimyasal, nükleer, ısı ve elektrik enerjisi gibi enerji çeşitleri de bulunmaktadır. Belli başlı enerji çeşitleri aşağıdaki tabloda gösterilmiştir.

Elektrik enerjisi bir iş yaptırdığına göre bir güce sahiptir. Buradan da görüldüğü gibi birim zamanda yapılan işe güç denir. Gücün birimi watt’tır. Bu güç devreye uygulanan gerilim ve çekilen akımla doğru orantılıdır. Elektriksel güç: P =VxI şeklinde ifade edilir. P = Elektriksel güç (Watt), V= Gerilim (Volt), I= Akım (Amper)

Örnek: 220 volt gerilimle çalışan bir ütü 4.8 amper akım çekmektedir bu ütünün gücünü hesaplayınız. P= V x I= 220 x 4,8 = 1056 watt

Alıcılar genellikle standart gerilimlerde çalıştıklarından aynı gerilimle çalışan alıcılardan fazla akım çekenler daha fazla güç harcayacaktır. Elektrik devrelerinde güç ampermetre-voltmetre kullanılarak veya wattmetreler kullanılarak ölçülür.

1.1.2.1. Ampermetre ve Voltmetre Yardımı ile Güç Ölçmek

P = V x I formülünde görüldüğü gibi elektrik devrelerinde akım ve gerilimin çarpımı elektriksel gücü verir. Burada elektrik devresinin çektiği gücün bulunabilmesi için akım ve gerilim değerlerinin ölçülmesi gereklidir. Ancak alternatif akımda omik dirençlerin çektiği güç aktif, bobin ve kondansatörlerin çektiği güç reaktiftir. Bu yüzden P= V x I formülü ile gücün hesaplanması, yalnız DC devrelerde ve omik dirençli AC devrelerinde mümkündür.

1.1.2.2. Wattmetreler ile Güç Ölçmek

Doğrudan doğruya güç ölçen aletlere wattmetre denir. Wattmetrelerin dijital ve analog tipleri bulunmakta olup, genelde W ve KW seviyelerinde sınıflandırılır. Wattmetreler ile doğru ve alternatif akımda güç ölçülebilir. Ancak AC ve DC wattmetre seçimine, AC ve DC’de güç ölçebilen wattmetre de ise AC-DC kademe seçimine dikkat edilmelidir. Güç akım ve gerilimin çarpımına eşit olduğundan wattmetreye alıcının akım ve gerilim değerleri aynı anda girilmelidir. Bu ihtiyaç wattmetrenin akım bobini güç ölçümü yapılacak devreye seri, gerilim bobini paralel olacak şekilde bağlanarak karşılanır. Wattmetrelerde küçük güç ölçülecekse akım bobinin, sonra büyük güç ölçülecek ise akım bobininin önce bağlanması ölçme hatasını azaltacaktır.

1.1.2.3. İş Ölçmek

Elektrik enerjisinin zaman içerisinde kullanımı işi oluşturur. W =P.t formülü ile iş hesaplanır. Elektriksel işi ölçen aletlere elektrik sayaçları denir. Elektrik sayaçları abonenin harcadıkları elektrik enerjisini kilowatt saat (KWh) cinsinden ölçer.

Elektrik sayaçları, harcanan elektrik enerjisini KWh cinsinden ölçen, bir ve üç fazlı alternatif akım devrelerinde kullanılan indüksiyon tipi ve elektronik tip olarak üretilen ölçü aletleridir. Son yıllarda elektronik elektrik sayaçları olarak isimlendirilen elektrik sayaçları, günün farklı saatlerinde ve hafta sonları farklı ücretlendirme yapabildiklerinden kullanımı zorunlu olmuştur. Analog sayaçlarda akım ve gerilim bobini mevcut olup sayaca bağlı devreden akım geçtiğinde oluşan manyetik alan sayaç içerisindeki alüminyum diskin dönmesini sağlar. Diskteki hareket bağlı olduğu bir numaratöre aktarılır, böylece harcanan elektrik enerjisi miktarı numaratör ile ifade edilir. Elektronik sayaçlarda ölçülen iş dijital bir ekrandan okunur. Bu sayaçlarda ölçülen değer, tarih, gerçek zaman saati dönüşümlü olarak dijital ekranda ifade edilir. Elektronik sayaçlar farklı tarifeler üzerinden ücretlendirme yapmanın yanında optik port vasıtası ile okuma kolaylığı sağlamaktadır. Kalibrasyona analog sayaçlara göre daha az ihtiyaç göstermektedir.

ELEKTRONİK ENSTRÜMANTASYON VE KONTROL SİSTEMLERİ

1.1.3. Bir Sıvının Özellikleri ve Sıvının Viskozitesi

Akışkan (sıvı – likit) madde denince aklımıza hemen “akan madde” gelir. Çünkü maddeler tabiatta katı, sıvı ve gaz hâlinde bulunur. Bunlardan sıvı ve gaz hâlindeki maddeler akışkandır. Akışkan maddede maddenin molekülleri birbiri üzerinde kayar. Su, yağ, cıva gibi maddeler akışkanlık özelliğine sahiptir.

Bu akma, madde moleküllerinin birbiri üzerinde kaymasıdır. Bazı maddelerin akışkanlığı az iken bazı maddelerinki ise yüksektir. Örneğin, suyun akışkanlığı yağın akışkanlığından fazladır.

Akışkan maddelerin belli biçimleri yoktur. Konuldukları kabın biçimini alırlar. Buna biz sıvıların esnekliği diyoruz. Bütün maddeler gibi sıvılar da yerçekimine maruz kaldıkları için ağırlıkları vardır. Bu yüzden bulundukları kaba bir kuvvet uygularlar. Bir bardak suyu yere döktüğümüzde su etrafa doğru yayılır. Çünkü sıvı maddenin molekülleri, birbiri üzerinde kayar. Bir torba içine su doldurduğumuzda bir parmağımızla bir yerine bastıralım. Diğer parmaklarımızla da başka bir yerine dokunalım. Dokunduğumuz parmağımızın itildiğini hissederiz. Buradan şu sonucu çıkarabiliriz: Sıvılar, üzerine uygulanan basıncı aynen iletirler. Bir kaptaki suya kabın ağzını tam olarak kapatacak şekilde bir cisimle bastırdığımızda kapağı itemediğimizi görürüz. Demek ki sıvıların bir özelliği de sıkıştırılamamalarıdır.

Gazlarda ise akışkanlık özelliği sıvılara göre biraz farklıdır. Gazların belli hacimleri olmadığı için bulundukları ortama yayılırlar. Molekülleri sürekli hareket hâlinde ve birbirlerine çarpmaktadırlar. Fakat gazlar sıvılardan farklı olarak sıkıştırılabilir.

Bir maddenin birim hacminin kütlesine yoğunluk denir. Yoğunluğun diğer adı özkütledir. Kütle, yerçekiminden bağımsız olduğundan özkütle de yerçekiminden bağımsızdır. Yoğunluk, maddelerin ayırt edici bir özelliğidir. Örneğin, suyun yoğunluğu 1g/cm3, demirin yoğunluğu 7,8 g/cm3tür. Bir kap içinde bir sıvı düşünelim. Kabın kenarından bir delik açalım. Sıvı akmaya başlar. İşte sıvıların dar bir boğazdan akabilmesine o sıvının akıcılık derecesi denir. Peki aynı miktarda sıvılar aynı delikten eşit zamanda mı akar? Yapılan deneylerde her sıvının farklı zamanlarda aktığını göstermiştir.

Akıcılık derecesi teknik dilde viskozite kavramıyla ifade edilmektedir. Bir litrelik herhangi bir sıvı madde, bir kaptaki delikten 10 sn.de akıyorsa; aynı miktarda başka bir sıvı da 5 sn.de akıyorsa bu “ikinci sıvının akışkanlığı daha yüksektir” deriz. Akışkanlığı iyi olan sıvıların viskozitesi düşük, akışkanlığı kötü olan sıvıların viskozitesi ise yüksektir.

• Viskozite: Sıvıların akmaya karşı direncini gösteren bir terimdir. Akış hızının karşıtıdır. Örneğin su düşük, bal yüksek viskostur. Motor yağları için sınıflandırmada önemlidir.

1.1.4. Sıcaklık Değerlerinin Dönüşümü

Enerji kaynağımız olan Güneş, Dünya’mıza gönderdiği ışınlarla bizleri ısıtmaktadır. Yazın hava ısındığı için sıcaklık değeri artar. Kışın ise hava soğuduğu için sıcaklık düşer. Isı ile sıcaklık kavramlarını çok kullanırız. Bu kavramlar aynı gibi görünse de aslında çok temel farklılıkları vardır. Bunun için bu kavramların farklarını öğrenmek zorundayız. Isı bir enerji çeşididir. Maddeyi oluşturan atom ve moleküller sürekli hareket hâlindedir. Bu atom ve moleküllerin hareketlerinden dolayı oluşan enerjiye ısı enerjisi diyoruz. Fakat sıcaklık, maddenin ortalama hareket (kinetik) enerjisini gösteren bir değerdir. Bir maddenin sıcaklığı dendiğinde maddedeki bir molekülün ortalama kinetik enerjisi söylenmiş olur. Hatta bu değeri duyu organlarımızla algılayabiliriz. Maddenin ısısı dendiğinde ise o maddedeki toplam kinetik (hareket) enerjisi anlaşılır. Bu anlatılanlara göre sıcaklığın tanımınışöyle yapabiliriz: Sıcaklık bir maddedeki tanecik başına düşen ortalama kinetik enerjinin bir ölçüsüdür. Buradan şu sonucu çıkarabiliriz: Sıcaklık maddenin ne kadar olduğuna bağlı değildir. Ama ısı, madde miktarına bağlıdır. Biri diğerinin sonucunda değişikliğe uğrar. Aşağıda ısı ve sıcaklığın farkları gösterilmiştir.

ISI SICAKLIK

Kalorimetre kabı ile ölçülür. Termometre ile ölçülür. Enerji çeşididir. Enerji değildir. Enerji birimleri (kalori, joule) Birimi derecedir. Santigrad, Fahrenheit Fahrenhayt, Kelvin, Reaumur kullanılır. dereceleri kullanılır.

Sıcaklık birimleri dört farklışekilde gösterilir. Bunlar Santigrad, Fahrenheit (Fahrenhayt), Kelvin ve Reaumur (Reomür) dereceleridir. Santigrad derecesi en çok kullanılan sıcaklık birimidir. Amerika ve İngiltere gibi bazı ülkelerde ise Fahrenayt derecesi çoğunlukla kullanılır. Kelvin ve Reomur derecelerinin kullanım alanı daha azdır. Santigrad derecesini 1742 yılında İsveçli fizikçi Celcius, 1 atm. basınç altında suyun donma sıcaklığını 0, kaynama sıcaklığını 100 kabul ederek ve 100 eşit parçaya bölerek elde etmiştir. Bir diğer ölçeklendirme sistemi olan Kelvin ölçeğini ise Lord Kelvin geliştirmiştir. Kelvin, teorik olarak erişilebilecek en düşük sıcaklık olan –273 °C’yi mutlak 0 noktası kabul etmiştir. Yapılan araştırmalarda hiçbir maddenin sıcaklığı -273 ºC’nin altına düşürülememiştir. İşte Kelvin bu sıcaklığı referans kabul etmiştir.

Fahrenhayt referans olarak yine aynışartlar altında suyun donma ve kaynama noktalarını almış olup donma noktası 32 F, kaynama noktası 212 F alınarak 212 -32=180 eşit parçaya bölünmüştür. Reomür ölçeğinde 0 Roemür donma noktası, 80 Roemür kaynama noktası alınarak 80 eşit parçaya bölünmüştür. Bir önceki sayfada bu dört derecenin birbirleri ile olan bağıntısını daha iyi görmektesiniz. Yukarıda belirlenen bu dört ölçeğin birbirine dönüşümünü sağlamak için aşağıdaki eşitlik yazılabilir.

ELEKTRONİK ENSTRÜMANTASYON VE KONTROL SİSTEMLERİ

ÖRNEK: 250 Kelvin derece kaç santigrad derecedir?

ÇÖZÜM:Yukarıdaki bağıntıdan,

Celcius ile Kelvin birimleri arasında C=K-273 bağıntısı olduğu görülüyor. Buradan değerleri yerine yazarsak; C=K-273 C=250-273

Sıcaklığın kendisi direkt olarak ölçülemez. Sıcaklık ölçümünde kullanılan araçların çalışma prensipleri fiziğin ve termodinamiğin temel yasalarına dayanmaktadır. Sıcaklık temel olarak termometre ile ölçülür. Cıvalı termometreler ise sıcaklığa bağlı olarak maddedeki hacimsel değişim esasına dayalı olarak çalışırlar. 76 mm cıva basıncında iki sabit sıcaklık seçilerek, kılcal boru içerisindeki cıvanın iki sıcaklık arasındaki hacimsel farkı lineer olarak bölümlendirilir. Bu işlem için suyun donma ve kaynama sıcaklıkları seçilir.

Sıcaklık ölçümünde kullanılan üç çeşit termometre vardır:

  • Cıvalı ya da alkollü termometre
  • Madeni ya da metal termometre
  • İnfrared termometre

Yaygın olarak kullanılan termometreler cıvalıdır. Bunların çalışma esası sıvıların genleşme esasına dayanır. Bildiğimiz gibi ısınan bir telin boyu uzar, ısınan bir sıvı ya da gaz genleşir. Dolayısıyla bir sıvıyı ölçeklendirilmiş bir tüp içerisine koyarsak basit termometre yapmış oluruz. Cıvalı termometrede cıva, cam hazne içindedir. Sıvılar sıcaklık arttıkça genleştiği için haznenin devamı olan kılcal boru içindeki sıvı sütunu seviyesi yükselir. Ya da sıcaklık düştüğü zaman sıvı seviyesi düşer. Seviyenin yanı taksimatlı bir şekilde ölçeklendirilmiş olduğundan sıcaklık bu ölçek sayesinde okunur. Düşük sıcaklıkların olduğu yerlerde ise donma sıcaklığı düşük olan alkollü termometreler kullanılır. Madeni (metal) termometreler ise bi-metal elemanlıdır. Bi-metal eleman uzama katsayısı farklı iki metalin birleştirilmesi ile oluşan elemandır. Sıcaklığı algılayan kısım bi-metalden yapılmış helezon şeklinde bir yay olduğu için uzama farkından dolayı eğilen metalin bir değer göstermesi ile ölçüm gerçekleşir. Aşağıda bazı termometrelerin şekilleri gösterilmiştir.

ELEKTRONİK ENSTRÜMANTASYON VE KONTROL SİSTEMLERİ ELEKTRONİK ENSTRÜMANTASYON VE KONTROL SİSTEMLERİ

TÜM DERS NOTLARI İÇİN TIKLAYIN
YORUMLAR

YORUM YAZ
Yorum yazabilmek için sağ üstten giriş yapmanız gerekir.
  Üye değilseniz,üye olmak için
 TIKLAYIN.
Lütfen sorularınızı yukarıdaki SORUSOR sekmesinden sorunuz
Buradan sorularınıza admin tarafından CEVAP VERİLMEYECEKTİR.
Max. 1000 karakter.
Sinavlara hazirlik